Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, China, Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai, China, Shanghai Research Center for Quantum Sciences, Shanghai, China
Abstract:Autonomous driving systems demand trajectory planners that not only model the inherent uncertainty of future motions but also respect complex temporal dependencies and underlying physical laws. While diffusion-based generative models excel at capturing multi-modal distributions, they often fail to incorporate long-term sequential contexts and domain-specific physical priors. In this work, we bridge these gaps with two key innovations. First, we introduce a Diffusion Mamba Transformer architecture that embeds mamba and attention into the diffusion process, enabling more effective aggregation of sequential input contexts from sensor streams and past motion histories. Second, we design a Port-Hamiltonian Neural Network module that seamlessly integrates energy-based physical constraints into the diffusion model, thereby enhancing trajectory predictions with both consistency and interpretability. Extensive evaluations on standard autonomous driving benchmarks demonstrate that our unified framework significantly outperforms state-of-the-art baselines in predictive accuracy, physical plausibility, and robustness, thereby advancing safe and reliable motion planning.
Abstract:Achieving human-level competitive intelligence and physical agility in humanoid robots remains a major challenge, particularly in contact-rich and highly dynamic tasks such as boxing. While Multi-Agent Reinforcement Learning (MARL) offers a principled framework for strategic interaction, its direct application to humanoid control is hindered by high-dimensional contact dynamics and the absence of strong physical motion priors. We propose RoboStriker, a hierarchical three-stage framework that enables fully autonomous humanoid boxing by decoupling high-level strategic reasoning from low-level physical execution. The framework first learns a comprehensive repertoire of boxing skills by training a single-agent motion tracker on human motion capture data. These skills are subsequently distilled into a structured latent manifold, regularized by projecting the Gaussian-parameterized distribution onto a unit hypersphere. This topological constraint effectively confines exploration to the subspace of physically plausible motions. In the final stage, we introduce Latent-Space Neural Fictitious Self-Play (LS-NFSP), where competing agents learn competitive tactics by interacting within the latent action space rather than the raw motor space, significantly stabilizing multi-agent training. Experimental results demonstrate that RoboStriker achieves superior competitive performance in simulation and exhibits sim-to-real transfer. Our website is available at RoboStriker.
Abstract:Rating the accuracy of captions in describing images is time-consuming and subjective for humans. In contrast, it is often easier for people to compare two captions and decide which one better matches a given image. In this work, we propose a machine learning framework that models such comparative judgments instead of direct ratings. The model can then be applied to rank unseen image-caption pairs in the same way as a regression model trained on direct ratings. Using the VICR dataset, we extract visual features with ResNet-50 and text features with MiniLM, then train both a regression model and a comparative learning model. While the regression model achieves better performance (Pearson's $ρ$: 0.7609 and Spearman's $r_s$: 0.7089), the comparative learning model steadily improves with more data and approaches the regression baseline. In addition, a small-scale human evaluation study comparing absolute rating, pairwise comparison, and same-image comparison shows that comparative annotation yields faster results and has greater agreement among human annotators. These results suggest that comparative learning can effectively model human preferences while significantly reducing the cost of human annotations.
Abstract:In social recommenders, the inherent nonlinearity and opacity of synergistic effects across multiple social networks hinders users from understanding how diverse information is leveraged for recommendations, consequently diminishing explainability. However, existing explainers can only identify the topological information in social networks that significantly influences recommendations, failing to further explain the synergistic effects among this information. Inspired by existing findings that synergistic effects enhance mutual information between inputs and predictions to generate information gain, we extend this discovery to graph data. We quantify graph information gain to identify subgraphs embodying synergistic effects. Based on the theoretical insights, we propose SemExplainer, which explains synergistic effects by identifying subgraphs that embody them. SemExplainer first extracts explanatory subgraphs from multi-view social networks to generate preliminary importance explanations for recommendations. A conditional entropy optimization strategy to maximize information gain is developed, thereby further identifying subgraphs that embody synergistic effects from explanatory subgraphs. Finally, SemExplainer searches for paths from users to recommended items within the synergistic subgraphs to generate explanations for the recommendations. Extensive experiments on three datasets demonstrate the superiority of SemExplainer over baseline methods, providing superior explanations of synergistic effects.
Abstract:Despite rapid progress in text-to-speech (TTS), open-source systems still lack truly instruction-following, fine-grained control over core speech attributes (e.g., pitch, speaking rate, age, emotion, and style). We present VoiceSculptor, an open-source unified system that bridges this gap by integrating instruction-based voice design and high-fidelity voice cloning in a single framework. It generates controllable speaker timbre directly from natural-language descriptions, supports iterative refinement via Retrieval-Augmented Generation (RAG), and provides attribute-level edits across multiple dimensions. The designed voice is then rendered into a prompt waveform and fed into a cloning model to enable high-fidelity timbre transfer for downstream speech synthesis. VoiceSculptor achieves open-source state-of-the-art (SOTA) on InstructTTSEval-Zh, and is fully open-sourced, including code and pretrained models, to advance reproducible instruction-controlled TTS research.
Abstract:Reinforcement learning has substantially improved the performance of LLM agents on tasks with verifiable outcomes, but it still struggles on open-ended agent tasks with vast solution spaces (e.g., complex travel planning). Due to the absence of objective ground-truth for these tasks, current RL algorithms largely rely on reward models that assign scalar scores to individual responses. We contend that such pointwise scoring suffers from an inherent discrimination collapse: the reward model struggles to distinguish subtle advantages among different trajectories, resulting in scores within a group being compressed into a narrow range. Consequently, the effective reward signal becomes dominated by noise from the reward model, leading to optimization stagnation. To address this, we propose ArenaRL, a reinforcement learning paradigm that shifts from pointwise scalar scoring to intra-group relative ranking. ArenaRL introduces a process-aware pairwise evaluation mechanism, employing multi-level rubrics to assign fine-grained relative scores to trajectories. Additionally, we construct an intra-group adversarial arena and devise a tournament-based ranking scheme to obtain stable advantage signals. Empirical results confirm that the built seeded single-elimination scheme achieves nearly equivalent advantage estimation accuracy to full pairwise comparisons with O(N^2) complexity, while operating with only O(N) complexity, striking an optimal balance between efficiency and precision. Furthermore, to address the lack of full-cycle benchmarks for open-ended agents, we build Open-Travel and Open-DeepResearch, two high-quality benchmarks featuring a comprehensive pipeline covering SFT, RL training, and multi-dimensional evaluation. Extensive experiments show that ArenaRL substantially outperforms standard RL baselines, enabling LLM agents to generate more robust solutions for complex real-world tasks.
Abstract:This study presents a Secure Multi-Tenant Architecture (SMTA) combined with a novel concept Burn-After-Use (BAU) mechanism for enterprise LLM environments to effectively prevent data leakage. As institutions increasingly adopt LLMs across departments, the risks of data leakage have become a critical security and compliance concern. The proposed SMTA isolates LLM instances across departments and enforces rigorous context ownership boundaries within an internally deployed infrastructure. The BAU mechanism introduces data confidentiality by enforcing ephemeral conversational contexts that are automatically destroyed after use, preventing cross-session or cross-user inference. The evaluation to SMTA and BAU is through two sets of realistic and reproducible experiments comprising of 127 test iterations. One aspect of this experiment is to assess prompt-based and semantic leakage attacks in a multi-tenant architecture (Appendix A) across 55 infrastructure-level attack tests, including vector-database credential compromise and shared logging pipeline exposure. SMTA achieves 92% defense success rate, demonstrating strong semantic isolation while highlighting residual risks from credential misconfiguration and observability pipelines. Another aspect is to evaluate the robustness of BAU under realistic failure scenarios (Appendix B) using four empirical metrics: Local Residual Persistence Rate (LRPR), Remote Residual Persistence Rate (RRPR), Image Frame Exposure Rate (IFER), and Burn Timer Persistence Rate (BTPR). Across 72 test iterations, BAU achieves a 76.75% success rate in mitigating post-session leakage threats across the client, server, application, infrastructure, and cache layers. These results show that SMTA and BAU together enforce strict isolation, complete session ephemerality, strong confidentiality guarantees, non-persistence, and policy-aligned behavior for enterprise LLMs.
Abstract:Recent years have witnessed success of sequential modeling, generative recommender, and large language model for recommendation. Though the scaling law has been validated for sequential models, it showed inefficiency in computational capacity when considering real-world applications like recommendation, due to the non-linear(quadratic) increasing nature of the transformer model. To improve the efficiency of the sequential model, we introduced a novel approach to sequential recommendation that leverages personalization techniques to enhance efficiency and performance. Our method compresses long user interaction histories into learnable tokens, which are then combined with recent interactions to generate recommendations. This approach significantly reduces computational costs while maintaining high recommendation accuracy. Our method could be applied to existing transformer based recommendation models, e.g., HSTU and HLLM. Extensive experiments on multiple sequential models demonstrate its versatility and effectiveness. Source code is available at \href{https://github.com/facebookresearch/PerSRec}{https://github.com/facebookresearch/PerSRec}.
Abstract:We present a novel system for real-time tracking of facial expressions using egocentric views captured from a set of infrared cameras embedded in a virtual reality (VR) headset. Our technology facilitates any user to accurately drive the facial expressions of virtual characters in a non-intrusive manner and without the need of a lengthy calibration step. At the core of our system is a distillation based approach to train a machine learning model on heterogeneous data and labels coming form multiple sources, \eg synthetic and real images. As part of our dataset, we collected 18k diverse subjects using a lightweight capture setup consisting of a mobile phone and a custom VR headset with extra cameras. To process this data, we developed a robust differentiable rendering pipeline enabling us to automatically extract facial expression labels. Our system opens up new avenues for communication and expression in virtual environments, with applications in video conferencing, gaming, entertainment, and remote collaboration.
Abstract:Time series classification is a fundamental machine learning task with broad real-world applications. Although many deep learning methods have proven effective in learning time-series data for classification, they were originally developed under the assumption of balanced data distributions. Once data distribution is uneven, these methods tend to ignore the minority class that is typically of higher practical significance. Oversampling methods have been designed to address this by generating minority-class samples, but their reliance on linear interpolation often hampers the preservation of temporal dynamics and the generation of diverse samples. Therefore, in this paper, we propose Evo-TFS, a novel evolutionary oversampling method that integrates both time- and frequency-domain characteristics. In Evo-TFS, strongly typed genetic programming is employed to evolve diverse, high-quality time series, guided by a fitness function that incorporates both time-domain and frequency-domain characteristics. Experiments conducted on imbalanced time series datasets demonstrate that Evo-TFS outperforms existing oversampling methods, significantly enhancing the performance of time-domain and frequency-domain classifiers.